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ARRANGEMENT OF FUSIJ?ORMBODIESTO REDUCE THE WAVE DRAG AT
SUPERSONICSPEEDS‘

By MORRISD. FBIEDMANand DOBIS COmN

SUMMARY

By means of linearized slender-body theory and rmerse-~
theorem, the me drq of a q@nn of fwiformbodia at aro
angle of athck and MLpersonic 8peed8 ti 8tudied to determim tlw

efect of va~i~ the rek!we location of the component pan%.
The investtiathn is limiied to two-body and three-body arrange-
ment of S’ear8-Eauck minimumdrq bodti. It ti found that
in certain awangenwnls the interference e$eck are benew,
and may even re.dt in th two- or three-body system having no
more wave drq than that of the principal body a.lmw. The most
favorable location appears to be one in which the maximum
cro88-8ectiOn oj the a?u%?iuy body b 8@~y joruxmd oj ifw
Mach cone jrom the tuil oj the muin body. The tit javorable
i.s the region between the Mach cm jTom the no8e and thejwe-

cone fTom h tail oj tlw muin body.

INTRODUCTION

When an airplane is to be equipped with external fuel tanks
or prominent nacelles, the effect on the drag will vary widely
with the location of such auxiliary bodies relative to the
other parts of the airplane. In reference 1, oalctiations were
made of the theoretical interference drag between the III&
form bodies of some typical arrangements, under the condi-
tions of supersonic speed and zero angle of attack. Later
developments iD linear theory have provided a simpler
method of performing such calculations, and the present
paper is a revision of reference 1 to take advantage of these
developments. Both reference 1 and the present work are
largely based on suggestions of R. T. Jones.

Two arrangements will be considered-a two-body com-
bination, as when one body is suspended beneath another,
rtnd a laterally symmetric three-body arrangement. The
radial and streamwise displacements of the auxiliary body
or bodies relative to the main one will constitute the param-
eters of the investigation. The calculation will be made for
combinations of Sears-Haack minimum-drag bodies (refs. 2
and 3), but the method of anrdysieis applicable to any slender
shapes for which the pressurefields are known. In particular,
it maybe mentioned that the main body and auxilkry bodies
need not be similar.
—.
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ANALYSIS

REvzflsRD-FLow THEORY

A basic condition of the analysis is that the bodies be
slender enough so that the resulting disturbance of an on-
coming stream may be represented by a linear distribution
of singularities+ources for a body of revolution, or higher-
order singularities for cambered bodies+f which the
strength may be dettied horn local conditions. In that
case, simultaneously reversing the direction of flow and the
sign of the source strength associated with a given isolated
body does not change the shape of the body, and the re-
versed-flow theorems of reference 4, which are stated in terms
of source distributions, may be applied to the bodies them-
selves. However, the streamlines at a distance from the
body are altered, so that it is not generally to be expected
that the theorems would be applicable to a ey8temof bodies
of prexxibod geometry. The location of the individual
bodies of the system in the streamlines of the other bodies
has the effect of introducing additional camber into the
boundary conditions and thereby modifying the equivalent
distribution of singularities. Calculations made to inve&i-
gate the effect of such induced camber on the drag of slender
bodies indicate that the magnitude is not likely to be any
significant fraction of the thickness drag.2 The additional
drag introduced by the induced camber will therefore be
ignored. With this simplication, the drag of a system of
slender bodies may be said to remain unchanged when the
direction of motion is reversed.

In the present calculations, in which each of the bodies is
peti~ fore and aft, the &at consequence of the
reversibility proper@ is that only r-ard (or forward)
displacements of the auxiliary bodies relative to the main
body need be considered.

The reversibility property also leads to the possibility of
combining the pressure fialds for forward and reverse motion
&@re computing the drag, and taking half the resulting drag
as the drag in either direction. This point may be demon-
strated as follows:

Regarding the body RSstationary in an oncoming stream,
let dR/dx be the lokal inclination of any element of surface

lFmemnple+ thedregdnotn wboflocmnber ofallneo[m- mrrearmndlm toa

SmmHnaok body k # (AGl)h: tIrneYthe drag of tho remembered W, hwng tliemsbimm

mmber fn -t of ImdYlength.
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area dS’ (of a body of revolution) to the stream and Cflfbe
the pressure coefhient at the centioid of the element (see
fig. 1). Then the corresponding element of drag is simply
(tQ the first order)

qcP.(dR/dx) G%’

where g is the free-stmsm dynsmic prmure and S’ is the
surfaca area. Now, let the body be reversed on the x sxis
(fig. 2), with its tail headed into the reIative wind. At the

v
Df

FIGUBBl.—Drag and relative wfnd corresponding i% forward motion
of the body.

v D,
-

Fmurm 2.—Drag and relative wind in reverse flow.

previously considered element of area a new pressure coeffi-
cient cPrwill result; the slope dRldx will merely be revenwd
in sign. The sum of the two elements of drag will be

(1)

where the substipt j refers to quantities corresponding to
forward motion and r to rearward, or reverse flow. The
total combined drsg is the integral of this quantity, and is
twice the drag of the body trave@ in either direction.

The foregoing device, similar to one first suggy%ted in
reference 5, results in considerable mathematical eimplifka-
tion in many csses. Thus, the argument of reference 6 that
in the combined flow field the drag of one wing due to the
field of another is equal to that of the second due to the
field of the first can be extended to apply to systems of slender
bodies under the conditions outlined above. Then only one
calculation of the interference drsg need be made for each
pair of bodies; for example, in the present analysis only the
drag of the auxiliary body due to the combined pressure
field (cpf—cP,) of the main body will be calculated.

PIZ~ FIELDOF A SEARS-HAACE BODY

In the examples to be worked in this paper, all bodies will
be closed bodies of revolution having individually the form

for minimum theoretical wave drwz for tiven length and
volume. This shape (refs. 2 and 3) ‘k give; by -

R’(z) =c(&z$)’~ (2)

(See Appendix for a list of symbols.) The flow about one
such body can be calculated as the flow due to a distribution
of sources and sinks along the body &s, the source strength
j(z) being related to the body geometry by the equation
(ref. 7)

(3)

The pressure coefficient near the body
order (see ref. 8) by the relation

in which u= @/bx is the streamwise
perturbation velocity and v=bP/& the
Iuaamuch as the latter component falls off with &stance
from the body aa I/r and its contribution to the pressure
decreases with l/P, it may be possible to neglect the second
term in Cpin computing the interference drag. It will be
shown by a numerical example that this simplification is in
fact permissible in the present investigation. At the surface
of the body, the ratio o/V is, to tit order, the streamwise
slope of the body and, in the case of the symmetrical bodies
under consideration, the integration for the drag will result
in canceling out all effects of the radial component of velocity,
Thus it is sufficient for our purpose to retain only the linear
term in equation (4a), writing

2U
c+—— v

From reference 7,

isgiven to the first

(4Q)

component of the
radial ccmpommt.

From equations (2) arid (3), i‘ (.$)is in the present case

and

(4b)

(6)

(6)

It should be remarked that for E>l the integrand vanishes,
and that CPis zero when z—I?< —1.

The integration in equation (6) yields three diflerent
exprtions, depending on whether

&-l<& l-@ (Region I)

]&~Fl<Z<z+& (Region II)

or

x>l+~r (Region III)
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I’mum 3,—Regions in pressure 5eld around isolated Sears-Haack body.

The three regions deiined above are shown in figure 3. The
expressions for the approxinmte pressure coefficient are

Region I

‘I=m *l=fi-’J’%=‘7)
Region II

N —3TGcpn—
[

1(Z+:&~2x) KJkJ-2Ti%Eo(kJ+ 2zWz,kJ]

‘Z=m +,=sh-’Gz ‘8)

Region III

[

(z–~r)2 ~o(k,)+

‘“11=3”’4=EV

The quantities K., E. and Ao are defined in the Appendix
and tabulated in reference 9; Aois tabulated also in reference
10.

The magnitude of the approximate pressure coefficient, as
given by equation (7), at the surface of a body of fineness
ratio 10 at M=@ is plotted in figure 4, together with the
more accurate vaks obtained by the use of equation (4a).
It is apparent that the difference, in the case of so slender a
body, is not grmt and, as previously noted, will diminish
rapidly with distance.

An isometric sketch of the pressure coeflkient calculated
by equations (7), (8), and (9) is shown in figure 5. Of par-
ticuhtr interest is the logarithmic infinity along the Mach
cone from the tail of the body. Except at the body itself,
the pressure is finite everywhere else and goes smoothly

41s072+7-53

.3 ,
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FIGURE4.—Prw9ure coeffloient on Scare-Haack body, iinene.asratio 10,
at .ii=JZ. Effeot of # term.

through the forecone from the tail, in spite of the change in
the form of its mathematical expression.

COMMNRD PRRSSDREFIRLD

If now the body is reversed in heading and the resulting
pressurefield subtracted from that given above, the combined
pressure field is found as

7P(Z)=Cp(z) —Cp(—z) (lo)

beeause of the fore-and-aft symmetry of the body. The
various regions of the combined field are shown in figure 6.

It is seenfrom figure 6 that there is only one region in which
any possibility of further mathematical simplification ap-
pears. In this region (where Region I and Region I of the
r?mersedfield overlap) we have to consider.

Zq=cpI(z)—cn(—z)

Through the relation (ref. 10, p. 36)

A.(#,k) +ii.(~,k)=l +k”K. Sin

when

tan + tan =*

equation (11) reduces to

?PI=—6TCZ (12)

Thus, the pressure gradient of the combined field is a con-
stant in the neighborhood of the body, as speciiied in refer-
ence 6 for minimum wave drag with a given volume.3

CALCULATION OF TEE WAVE DRAG

As previously indicated, it is proposed in calculating the
drag to ignore the drag introduced by the curvature of the
flow due to adjacent bodies, and therefore to replace each
body by the equivalent source distribution in a uniform
stream. If, following this course, we considtw the entire
flow field to be essentially the result of the superposition of
the fields of the individual bodies, we have b compute

(a) one-half the drag of eaoh body in its own combined
pressure field,

JAlthou@ mfesw%6d @alss@i&aUYtith thSnwSnt% ltlsre3dIW timthatthe -
consideratkms hold for slender bcdIe3 onder the ~p- used lk3rehL
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FmuRn 5.—Isometno slietoh of the p~ distribution in the field surrounding a single Sears-Haack body, fieness ratio 10, at M=@.

(b) the drag of each wzriliary body in the combined field
of the main body, and

(c) the drag of one auxiliary body in the field of the other,
if more than one mmilhry body is included. It maybe seen
that the drag of the second body in the field of the first is
taken care of by the factor cf 2 introduced by the use of the
combined pressure field.

1, q?=o , /
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Ir’ /I\\ Ir
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Fmmm 6.—Regions in combined prewure field of a single body.’ ‘ ‘

If equation (1) is applied to a body of revolution, the total
drag in combined flow maybe written

and, for the Sears-Haack bodies,

(w—=–3cx4m
(ZZ

(14)

The drag of d body due to its own pressure field is then
one-half that obtained by substituting from equations (12)
and (14) in equation (13), or

DO=W,~J:’XWIEWC

=: #q14# (16:

or, since the mtium crow-sectional area is, from.‘equatior
(2),

SF=TCP (16:
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the drag interme of frontal area is

(17)

which is in agreement with the value given in reference 2.
The interference drag is calculated by substituting in

equation (13) the pressure coefficient associated with one
body and the value of dR1@x associated with the other.
Considering first a two-body combination, we may take the
origin of coordinates at the center of one, which will be
designated the “main” body, and let the center of the
auxiliary body be diaplaeed tim it a distance Z. downstream
and rLdistanm rOlaterally or vertically. Then, if for a first
approximation the pressurefield of the main body is assumed
not to vary signifhntly in the distance between the axis of
the auxiliary body and its surface, the values of & are ob-
tained from equations (12), (8), and (9) by letting r= TO.

Equation (14) is modiiied to take into account the displace-
ment of the auxiliary body:

dR2
—=–3c,(z-a)J~&c

(18)

rtnd the geometric characteristics of the second body axe
used to detmnine c1and ll.

It is immediately apparent that if the auxiliary body lies
entirely within Region I (fig. 6), the value of 7P,and therefore
of the drag, is independent of TO. In fact, since the pressure
gradient is a constant throughout the region, the drag is
entirely independent of position so long as the body remains
within Region I. The interference drag in this ease is simply

(19)

or, more generally, D1/q equaIs the pressure gradient 6rc
times the volume of the auxiliary body, regardless of its
shape. It follows that, since the interference drag camot
bo reduced by redistributing the additional volume within
this region, the Sears-Haack body remains the optimum
auxiliary body for this configuration, regardless of inter-
ference effects? It is possible that in a region of more
rapidly chrtnging pressure gradient a significantly different
shapo for minimum drag would be found.

In Region II the pressure gradient changes from negative
to positive (see @. 6) and a small body placed so as to
take rtdvantage of this buoyancy would conceivably experi-
ence a negative interference drag, or thrust, which would
act to reduce the total dr~u of the combination. Substitu-
tion of c~n and, when required, cPmin equation (13) results
in integrals which can be evaluated only numerioaUy. We
therefore proceed at this point to the consideration of nu-
merieal examples

NUMERICAL CALCULATIONS

For an exploratory investigation, the simple case of two
bodies of fineness ratio 10, the small body having one-half

~An fmwtlgotbnby ItmnomaM W. v of a shnfler fntorfeiwnca problem, with
timy~tikh~~ bti-tilmmofm~~y~p restrfokzl
to Re@on I, lodfcnta on optlmom anslkry bwiy wbmo form ond added dmg dffkr a!dy
sllghtfy from UI093of a SwwHaook bdy.

the length of the main body, was chosen. With the half-
Iength of the larger body taken as unity, the other parametw
of the problam were

l,=+

C=o.ol

CI=O.02

In compressible flow-, the Mach number and erosw-stream
dimensions enter together in the form Pr. The investigation
covered vahm.sof &J ranging from 0.25 to 1.4. The effect
of streamwise displacement of the centers was explored to
a distance equal to the length of the larger body.

The intarferenee between the two outer bodies of a three-
body configuration was calculated in the ease of @rOfl=0.25
(wmm.ing the distance between the smrdler bodies to be
double the distance of eaoh horn the main body) and the
effect on the drag was found to be negligible. The results
to be presented are therefore equally applicable to the two-
body or three-body arrangement, only a fader of 2 in the
interference drag being required.

RESULTS AND DISCUSSION

The variation of interference drag with streamtie and
radial displacement is shown in figures 7 and 8. Because of
the symmetry of the curves, only the region to the rear of
the main body is shown. The anticipated favorable inter-
ference is observed when the small body is situated astide
the region of negative pressure gradient just ahead of the
Mach wave from the stern of the large body, the benefit of
course decreasing with increasing radial separation of the
bodies. The corresponding forward location of the small
body would be equally favorable, in accordance with the
reciprocity principle, because of the buoyancy imparted to
the large body by the wave from the stern of the small one.
The maximum drag is incurred when the auxiliary body is
added in the region enclosed by the Mach cone from the nose
of the main body and the Mach forecone from its tail.
Further outboard of this region, in line with the masimum
cross-section of the large body and just forward of the Mach
cone horn its nose, is a second, small region of favorable
interference, where the pressure field of the large body acts
only on the rear of the small body, and vice versa, resulting
in unopposed thrust.

In figure 8 the sketches indicate, for _M=-@, the relative
positions of the bodies when the interference is greatest.
The situation last described is show-nat %=0 in figure 8 (c).
From this point, or the low- slightly further outboard of it
(@. 7), areas of reduced drag extend both ways in directions
generally parallel to the Mach lines That running horn
upper left to lower right in the figure redts from the action
of the bow wave from the small body on the rear of the large
one; that in the opposite direction results from the bow
wave of the large body pushing on the rear of the small one.
The lowest drag of all remdtshorn the coincidence of one of
these areas with the negativedrag area associated with the
shock wave at the stern.

In figures 9 and 10 the wave drag coe&ient based on total
frontal area is shown for two-body and thr-body arrange-
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Sketch of ouxiliory body
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values of interference drag per unit added frontal area.
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ments. In connection with figure 10 it may be noted that
the bodies need not be side by side as sho~. E the small
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thorn may be less than 2r0. Home~er, the res~ts shown
will still apply as long as the bodies are not so C1OSCas Io
~@verise to appreciable additional interference ch~~.

Figures 9 and 10 indicate that in frictionless potential
flow it might be pomible to increase the volume by m much
as 25 percent (three-body arrangement) and at the same time
actually decrease the wave drag. In practice, of rourse, the
additional fiction drag might easily nullify any such gain.
Nevertheless, if there are to be auxiliary bodies. the impor-
tance of a careful selection of their relative positions seems
clear.
AarEsAERONAUTICAL LABORATORY

hTATIONALADVISORY COMMITTEE FOR AERONAUTICS
&lOFFETT FIELD, CALIF., September t?, 1954
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APPENDIX
SYMBOLS

l?-
codkient containing body dimensions, ~

value of c for auxiliary body
D.

wave-drag coei7icient,—
Q&

D,
interference drag coefficient, —

Q%
local pressure coefiicimt
pressure coefficient in forward motion
pressure coei%cient in reversed motion
pressure coefficient in “combined” field, Cpr–cp,
wave drag
wave drag of isolated body
interference drag
wave drag in forward motion
wave drag in reversed motion
combined wave drag, DJ+D,

~ timescomplete elliptic integral of the second kind

source strength
moduIus of elliptic integrals (with subscripts to

indicate different valuw)
complementary modulus, P

~ times complete elliptic integgal of the first kind

half-length of body
half-length of auxiliary body
free-stream Mach number
free-stream dynamic pressure
radial coordinate, measured from body axis
radial coordinate of center of auxiliary body,

measured from axis of main body
local radius of body (function of z)
radius of body at matium cross section
surface area
cross-sectional area
maximum cross section, or frontal area
stmamwise component of perturbation veIocity
radiaI component of perturbation velocity

v
z
X.

B
Ao(~,k)

E

;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

free-stream velocity
streammke coordinate, origin at the center of body
strewmvise coordinate of center of auxiliary bocly,

measured from center of main body
J-
Heumann’s “ elliptic function, EO(k)l’(~,k’) +

KJk)E(#,k’) —Ko(k)F(#,k’), tabuktecl in rofor-
ences 9 and 10

streamwise coordinate of source, origin at conh3r
of body

perturbation velocity potential
argument of incomplete elliptic integrals in A.

(with subscripts to denote various values)
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